Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17459, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838785

RESUMO

Temperature is an essential oceanographic variable (EOV) that still today remains coarsely resolved below the surface and near the seafloor. Here, we gather evidence to confirm that Distributed Acoustic Sensing (DAS) technology can convert tens of kilometer-long seafloor fiber-optic telecommunication cables into dense arrays of temperature anomaly sensors having millikelvin (mK) sensitivity, thus allowing to monitor oceanic processes such as internal waves and upwelling with unprecedented detail. Notably, we report high-resolution observations of highly coherent near-inertial and super-inertial internal waves in the NW Mediterranean sea, offshore of Toulon, France, having spatial extents of a few kilometers and producing maximum thermal anomalies of more than 5 K at maximum absolute rates of more than 1 K/h. We validate our observations with in-situ oceanographic sensors and an alternative optical fiber sensing technology. Currently, DAS only provides temperature changes estimates, however practical solutions are outlined to obtain continuous absolute temperature measurements with DAS at the seafloor. Our observations grant key advantages to DAS over established temperature sensors, showing its transformative potential for the description of seafloor temperature fluctuations over an extended range of spatial and temporal scales, as well as for the understanding of the evolution of the ocean in a broad sense (e.g. physical and ecological). Diverse ocean-oriented fields could benefit from the potential applications of this fast-developing technology.

2.
Sci Rep ; 13(1): 424, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624126

RESUMO

Earthquake early warning (EEW) systems provide seconds to tens of seconds of warning time before potentially-damaging ground motions are felt. For optimal warning times, seismic sensors should be installed as close as possible to expected earthquake sources. However, while the most hazardous earthquakes on Earth occur underwater, most seismological stations are located on-land; precious seconds may go by before these earthquakes are detected. In this work, we harness available optical fiber infrastructure for EEW using the novel approach of distributed acoustic sensing (DAS). DAS strain measurements of earthquakes from different regions are converted to ground motions using a real-time slant-stack approach, magnitudes are estimated using a theoretical earthquake source model, and ground shaking intensities are predicted via ground motion prediction equations. The results demonstrate the potential of DAS-based EEW and the significant time-gains that can be achieved compared to the use of standard sensors, in particular for offshore earthquakes.

3.
IEEE Trans Neural Netw Learn Syst ; 34(7): 3371-3384, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34919525

RESUMO

Fiber-optic distributed acoustic sensing (DAS) is an emerging technology for vibration measurements with numerous applications in seismic signal analysis, including microseismicity detection, ambient noise tomography, earthquake source characterization, and active source seismology. Using laser-pulse techniques, DAS turns (commercial) fiber-optic cables into seismic arrays with a spatial sampling density of the order of meters and a time sampling rate up to one thousand Hertz. The versatility of DAS enables dense instrumentation of traditionally inaccessible domains, such as urban, glaciated, and submarine environments. This in turn opens up novel applications such as traffic density monitoring and maritime vessel tracking. However, these new environments also introduce new challenges in handling various types of recorded noise, impeding the application of traditional data analysis workflows. In order to tackle the challenges posed by noise, new denoising techniques need to be explored that are tailored to DAS. In this work, we propose a Deep Learning approach that leverages the spatial density of DAS measurements to remove spatially incoherent noise with unknown characteristics. This approach is entirely self-supervised, so no noise-free ground truth is required, and it makes no assumptions regarding the noise characteristics other than that it is spatio-temporally incoherent. We apply our approach to both synthetic and real-world DAS data to demonstrate its excellent performance, even when the signals of interest are well below the noise level. Our proposed methods can be readily incorporated into conventional data processing workflows to facilitate subsequent seismological analyses.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Frequência Cardíaca , Acústica
4.
J Acoust Soc Am ; 149(4): 2615, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33940881

RESUMO

Distributed acoustic sensing (DAS) is a recent instrumental approach allowing the conversion of fiber-optic cables into dense arrays of acoustic sensors. This technology is attractive in marine environments where instrumentation is difficult to implement. A promising application is the monitoring of environmental and anthropic noise, leveraging existing telecommunication cables on the seafloor. We assess the ability of DAS to monitor such noise using a 41.5 km-long cable offshore of Toulon, France, focusing on a known and localized source. We analyze the noise emitted by the same tanker cruising above the cable, first 5.8 km offshore in 85 m deep bathymetry, and then 20 km offshore, where the seafloor is at a depth of 2000 m. The spectral analysis, the Doppler shift, and the apparent velocity of the acoustic waves striking the fiber allow us to separate the ship radiated noise from other noise. At 85 m water depth, the signal-to-noise ratio is high, and the trajectory of the boat is recovered with beamforming analysis. At 2000 m water depth, although the acoustic signal of the ship is more attenuated, signals below 50 Hz are detected. These results confirm the potential of DAS applied to seafloor cables for remote monitoring of acoustic noise even at intermediate depth.

5.
Sci Rep ; 9(1): 1775, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30742131

RESUMO

After large earthquakes, parts of the fault continue to slip for days to months during the afterslip phase, a behaviour documented for many earthquakes. Yet, little is known about the early stage, i.e., from minutes to hours after the mainshock. Its detailed study requires continuous high-rate position time series close to the fault, and advanced signal processing to accurately extract the surface displacements. Here, we use refined kinematic precise point positioning processing to document the early postseismic deformation for three earthquakes along the South American subduction zone (2010 Mw8.8 Maule, Chile; 2015 Mw8.3 Illapel, Chile; 2016 Mw7.6 Pedernales, Ecuador). First, we show that early afterslip generates significant surface displacement as early as a few tens of minutes after the earthquake. Our analysis of the time series indicates that, over the first 36 hours, more than half of the displacement occurs within the first 12 hours, a time window often disregarded with daily positioning. Thus, estimates of coseismic offsets can be biased by more than 10% if early postseismic displacements are acknowledged as coseismic ones. Finally, these results highlight the difficulty to accurately evaluate the different contribution to the seismic cycle budget and thus the associated hazard on faults.

6.
Science ; 354(6315): 1027-1031, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27885027

RESUMO

The 2004 Sumatra-Andaman and 2011 Tohoku-Oki earthquakes highlighted gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution: A fast convergence rate and young buoyant lithosphere are not required to produce mega-earthquakes. We calculated the curvature along the major subduction zones of the world, showing that mega-earthquakes preferentially rupture flat (low-curvature) interfaces. A simplified analytic model demonstrates that heterogeneity in shear strength increases with curvature. Shear strength on flat megathrusts is more homogeneous, and hence more likely to be exceeded simultaneously over large areas, than on highly curved faults.

7.
Science ; 332(6036): 1421-5, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21596953

RESUMO

Geophysical observations from the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki, Japan earthquake allow exploration of a rare large event along a subduction megathrust. Models for this event indicate that the distribution of coseismic fault slip exceeded 50 meters in places. Sources of high-frequency seismic waves delineate the edges of the deepest portions of coseismic slip and do not simply correlate with the locations of peak slip. Relative to the M(w) 8.8 2010 Maule, Chile earthquake, the Tohoku-Oki earthquake was deficient in high-frequency seismic radiation--a difference that we attribute to its relatively shallow depth. Estimates of total fault slip and surface secular strain accumulation on millennial time scales suggest the need to consider the potential for a future large earthquake just south of this event.

8.
Nature ; 465(7294): 78-81, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20445628

RESUMO

Slip on a subduction megathrust can be seismic or aseismic, with the two modes of slip complementing each other in time and space to accommodate the long-term plate motions. Although slip is almost purely aseismic at depths greater than about 40 km, heterogeneous surface strain suggests that both modes of slip occur at shallower depths, with aseismic slip resulting from steady or transient creep in the interseismic and postseismic periods. Thus, active faults seem to comprise areas that slip mostly during earthquakes, and areas that mostly slip aseismically. The size, location and frequency of earthquakes that a megathrust can generate thus depend on where and when aseismic creep is taking place, and what fraction of the long-term slip rate it accounts for. Here we address this issue by focusing on the central Peru megathrust. We show that the Pisco earthquake, with moment magnitude M(w) = 8.0, ruptured two asperities within a patch that had remained locked in the interseismic period, and triggered aseismic frictional afterslip on two adjacent patches. The most prominent patch of afterslip coincides with the subducting Nazca ridge, an area also characterized by low interseismic coupling, which seems to have repeatedly acted as a barrier to seismic rupture propagation in the past. The seismogenic portion of the megathrust thus appears to be composed of interfingering rate-weakening and rate-strengthening patches. The rate-strengthening patches contribute to a high proportion of aseismic slip, and determine the extent and frequency of large interplate earthquakes. Aseismic slip accounts for as much as 50-70% of the slip budget on the seismogenic portion of the megathrust in central Peru, and the return period of earthquakes with M(w) = 8.0 in the Pisco area is estimated to be 250 years.

9.
Nature ; 456(7222): 631-5, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19052626

RESUMO

The great Sumatra-Andaman earthquake and tsunami of 2004 was a dramatic reminder of the importance of understanding the seismic and tsunami hazards of subduction zones. In March 2005, the Sunda megathrust ruptured again, producing an event of moment magnitude (M(w)) 8.6 south of the 2004 rupture area, which was the site of a similar event in 1861 (ref. 6). Concern was then focused on the Mentawai area, where large earthquakes had occurred in 1797 (M(w) = 8.8) and 1833 (M(w) = 9.0). Two earthquakes, one of M(w) = 8.4 and, twelve hours later, one of M(w) = 7.9, indeed occurred there on 12 September 2007. Here we show that these earthquakes ruptured only a fraction of the area ruptured in 1833 and consist of distinct asperities within a patch of the megathrust that had remained locked in the interseismic period. This indicates that the same portion of a megathrust can rupture in different patterns depending on whether asperities break as isolated seismic events or cooperate to produce a larger rupture. This variability probably arises from the influence of non-permanent barriers, zones with locally lower pre-stress due to the past earthquakes. The stress state of the portion of the Sunda megathrust that had ruptured in 1833 and 1797 was probably not adequate for the development of a single large rupture in 2007. The moment released in 2007 amounts to only a fraction both of that released in 1833 and of the deficit of moment that had accumulated as a result of interseismic strain since 1833. The potential for a large megathrust event in the Mentawai area thus remains large.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...